小学数学教案

2021-02-28 小学数学教案

  作为一位兢兢业业的人民教师,时常需要用到教案,教案是教材及大纲与课堂教学的纽带和桥梁。来参考自己需要的教案吧!以下是小编整理的小学数学教案7篇,欢迎阅读,希望大家能够喜欢。

小学数学教案 篇1

  ●教学目标

  (一)教学知识点

  1.位似图形的定义与性质.

  2.复习橡皮筋放大图形的方法.

  3.解释用橡皮筋放大图形的原理.

  (二)能力训练要求

  1.了解图形的位似.

  2.能用橡皮筋放出相 同形状的图形,体会其中的道理

  (三)情感与价值观要求

  通过有趣的图形变换激发学生学习数学的浓厚兴趣,让学生感受图形变换的奥妙,体会学习数学的快乐.

  ● 教学重点

  1.位似图形的定义.

  2.用橡皮筋放大图形 的原理.

  ●教学难点

  体会用橡皮筋放大图形的原理,培养转换思想.

  ●教学方法

  观察与实践相结合的方法

  在仔细观察的 基础上,鼓励学生动手操作,体会生活中实际问题的数学道理,使学生操作与 思考相结合.

  ●教具准备

  若干个橡皮筋.

  投影片两张:

  第一张:

  第二张:●教学过程

  Ⅰ.提出问题,引入新课

  [师](放投影片4.9.1 A)请同学们观察一组图片,思考下列问题:

  1.它们是相似图形吗?

  2.图形 位置间有什么关系?你能寻找出一些规律吗?

  [生]它们的形状相同,大小不一,是相似图形.

  图形上各组对应点所在直线都经过镜头中心P点,A、B是一对对应点,连结后并延长过点P.这组图与相似图形比较,多了一些特征.

  [师]这正是我们今天要学习的内容.

  Ⅱ.讲授新课

  大家刚才观察到的一组特殊的相似图形,我们叫它位似图形,那么什么叫位似图形呢?请同学们阅读教材135页定义,仔细理解位似图形的要求.

  定义讲解:

  1.两图形相似

  2.每组对应点所在直线都经过同一点.

  同时满足上述两个条件的两个图形才叫做位似图形.两条件缺一不可.此时,把这个点叫做位似中心.这时的相似比叫做位似比.

  巩固定义做一做.

  [师](放投影片4.9.1 B)

  下面有三组图形,请同学们观察,并实际操作一下,看它们是否是位似图形.老师请一位同学板演.

  图4-52

  板演结果:

  图4-53

  [生]通过测量发现,三组图形的对应边各成比例,所以它们分别是相似图形.但连结后发现:(1)、(3 )图形的每组对应点所在直线交于一点.如图O、P,(2)却没有这个特征,这说明(1)中的两个图形与(3)中的两个图形都是位似图形,但(2)中的两个图形只是相似图形而不是位似图形.( 1)、(3)的位似中心分别是O、P.

  [师]这位同学很具有科学态度,他能准确应用定义解决问题.请大家在图(1)中任取一对对应点,度量这两个点到位似中心的距离,它们的比与位似比有关系吗?

  [生]它们的比等于位似比.

  [师]很好,在(3)中再试一试.

  [生]在(3)中发现也有这个特征.

  [另一生 ]老师,这可以用我们学过的相似三角形定理来证明.

  [师]这就更圆满了,于是我们 可以得出位似图形有如下性质:

  位似图形上任意 一对对应点到位似中心的距离之比等于位似比.

  请同学们回忆我们本章第3节学过的用橡皮筋放大图形的方法,叙述作法,并思考放大前后两个图形的关系为什么是位似.

  我们尝试用橡皮筋放大图形的方法将一个正方形放大,使得放大后的图形与原图形的位似比是3.

  将两个长短比例为1∶2的橡皮筋系在一起,在选定正方形外取一足点P,将系在一起的短橡皮筋的一端固定在P点,把一支铅笔固定在长橡皮筋的另一端, 拉动铅笔,使两个橡皮筋的结点沿正方形ABCD的边缘运动,当结点在正方形ABCD上运动一周时,铅笔就画出了一个新的正方形ABCD,它们形状相同,相似比为3.如图4-54所示.

  图4-54

  通过连结图中各对应点连线,发现它们交于一点P,所以用橡皮筋放大后的图形与原图形是位似图形.

  Ⅲ.随堂练习

  按如下方法可以将△ABC的三边缩小为原来的 :

  如图4-55任取一点O,连接AO、BO、CO,并取它们的中点 D、E、F.△DEF的三边就是△ABC相应三边的 (实际上,△ABC与△DEF是位似图形)

  图4- 55

  1.任意画一个三角形,用上面方法亲自试一试.

  2.如果在射线AO、BO、CO上分别取点D、E、F,使DO=2OA,EO=2OB,FO=2OC,那么结果又会 怎样?

  (答案如图4-56所示)

  图4-56

  Ⅳ.课时小结

  1.通过观察与操作,理解位似图形的两个条件缺一不可.了解位似图形的性质.

  2.能用位似图形定义解释前面学过的橡皮筋放大原理.做到温故知新,学以致用.

  Ⅴ.课后作业

  课本习题4.12

  预习图形的放大与缩小的后半节.

  答案 1:∵△OCD与△OAB是位似图形.

  △OCD∽△OAB 且两三角形各对应点连线交于一点O,于是得OCD=OAB.

  ∵OCD与OAB是同位角.

  AB∥CD.

  答案2:放大前后的图形是位似图形.用位似图形的定义去验证说明.

  Ⅵ. 活动与探究

  老师提供一张同学们比较喜欢的漫画人头像.请同学们将这张图放大一张,再缩小一张,对比 一下自己的杰作,看像不像.

  意图:让学生能够学以致用,锻炼各器官的协调性 和对科学认真负责的态度.

  完成后可做一次展评,让学生欣赏自己的杰作,陶冶审美情操,尽情享受劳动所得的喜悦.进一步激发学习数学的兴趣.

  ●板书设计

  4.9 图形的放大与缩小(一)

  一、位似图形定义

  1.两图形相似.

  2.每组对应点所在直线都经过同一点.

  二、用橡皮筋放大正方形

  三、随堂练习(学生板演)

小学数学教案 篇2

  一、准备练习

  (一)口算

  3.8+1.2 2.54 1.58

  1.50.3 0.64+0.16 7.6+0.24

  5-1.8 1.2580 3.64

  6.3+2.45+3.7 3.56-1.57-0.43

  0.87125 (2.5+0.9)4

  (1.5+0.25)4 0.64+1.44

  (二)口答,在□里填上适当的数.(说出依据)

  1.3.18□=1.2□

  2.(2.5+3.5)□=□□○□4

  3.□+4.3=□+0.86

  4.(2.51.2)□=1.2(□□)

  5.7.6-2.8-□=□-(□+3.2)

  (三)小结引入

  我们运用一些运算定律或者运算性质可以使计算简便,在四则混合运算中,能不能运用这些运算定律和性质,使计算简便呢?

  二、讲授新课

  (一)教学例4

  1.82.58+1.81.42

  1.观察算式特点

  2.学生试做

  方法一:1.82.58+1.81.42 方法二:1.82.58+1.81.42

  =1.8(2.58+1.42) =4.644+2.556

  =1.84 =7.2

  =7.2

  3.观察比较:两种方法哪一种计算起来比较简便?

  (第一种方法应用乘法分配律来计算,第二种方法只是根据一般的运算顺序)

  4.练习

  1.82.58+1.81.42+0.5

  =1.8(2.58+1.42)+0.5 (乘法分配律)

  =1.84+0.5

  =7.2+0.5

  =7.7

  5.小结

  通过刚才的练习,你对简算有什么新的